Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effects of Engine Operating Parameters on near Stoichiometric Diesel Combustion Characteristics

2007-04-16
2007-01-0121
Stoichiometric combustion could enable a three-way catalyst to be used for treating NOx emissions of diesel engines, which is one of the most difficult species for diesel engines to meet future emission regulations. Previous study by Lee et al. [1] showed that diesel engines can operate with stoichiometric combustion successfully with only a minor impact on fuel consumption. Low NOx emission levels were another advantage of stoichiometric operation according to that study. In this study, the characteristics of stoichiometric diesel combustion were evaluated experimentally to improve fuel economy as well as exhaust emissions The effects of fuel injection pressure, boost pressure, swirl, intake air temperature, combustion regime (injection timing), and engine load (fuel mass injected) were assessed under stoichiometric conditions.
Technical Paper

Fuel Injection and Mean Swirl Effects on Combustion and Soot Formation in Heavy Duty Diesel Engines

2007-04-16
2007-01-0912
High-speed video imaging in a swirl-supported (Rs = 1.7), direct-injection heavy-duty diesel engine operated with moderate-to-high EGR rates reveals a distinct correlation between the spatial distribution of luminous soot and mean flow vorticity in the horizontal plane. The temporal behavior of the experimental images, as well as the results of multi-dimensional numerical simulations, show that this soot-vorticity correlation is caused by the presence of a greater amount of soot on the windward side of the jet. The simulations indicate that while flow swirl can influence pre-ignition mixing processes as well as post-combustion soot oxidation processes, interactions between the swirl and the heat release can also influence mixing processes. Without swirl, combustion-generated gas flows influence mixing on both sides of the jet equally. In the presence of swirl, the heat release occurs on the leeward side of the fuel sprays.
Technical Paper

PCCI Investigation Using Variable Intake Valve Closing in a Heavy Duty Diesel Engine

2007-04-16
2007-01-0903
Parametric tests using various EGR amounts, boost intake pressures, fueling rates, intake valve closings (IVC), injection pressures, and start-of-injection timings were executed to explore the limitations and potential of an intake valve actuation system on a heavy-duty diesel engine. At high-speed, intermediate load (56%) operation, constant airflow and no EGR, the use of late intake valve closing enabled a 70% NOx reduction while maintaining PM levels. Through an investigation using low load operation, late IVC, and reduced intake pressure, 2010 not-to-exceed NOx and PM emissions (0.25 g/kW-hr NOx, 0.02 g/kW-hr PM) were achieved with 40% EGR. At medium load, constant air flow, and early SOI, it was found that the NOx, HC and BSFC levels at a late IVC with 30%EGR were comparable to those with the stock camshaft IVC timing of 143°BTDC with 40%EGR. In comparison, the CO and PM levels decreased by nearly 70% with the use of late IVC timing and less EGR.
Technical Paper

Premixed Compression Ignition (PCI) Combustion with Modeling-Generated Piston Bowl Geometry in a Diesel Engine

2006-04-03
2006-01-0198
Sustainable PCI combustion was achieved in a light-duty diesel engine through the installation of a 120° spray angle nozzle and modeling-generated piston bowl geometry developed for compatibility with early start-of-injection timings. Experimental studies were conducted to determine favorable settings for boost pressure, SOI timing, and EGR rate at 2000 rev/min, 5 bar BMEP. An optimal SOI timing was discovered at 43° BTDC where soot and NOx emissions were reduced 89% and 86%, respectively. A 10% increase in fuel consumption was attributed to increased HC and CO emissions as well as non-optimal combustion phasing. Combustion noise was sufficiently attenuated through the use of high EGR rates. The maximum attainable load for PCI combustion was limited by the engine's peak cylinder pressure and cylinder pressure rise rate constraints.
Technical Paper

An Experimental Investigation of Partially Premixed Combustion Strategies Using Multiple Injections in a Heavy-Duty Diesel Engine

2006-04-03
2006-01-0917
Optimizations were performed on a single-cylinder heavy-duty Caterpillar SCOTE 3401E engine for NOx, PM and BSFC reductions. The engine was equipped with a Caterpillar 300B HEUI fuel injection system capable of up to four injections with timings from 90 BTDC to 90 ATDC. The engine was operated at a medium load (57%), high speed (1737 rev/min) operation point. A micro-genetic algorithm was utilized to optimize a hybrid, double-injection strategy, which incorporated an early, premixed pilot injection with a late main injection. The fuel injection parameters, intake boost pressure, and EGR were considered in the optimization. The optimization produced a parameter set that met the 2007 and 2010 PM emissions mandate of 0.0134 g/kW-hr, and was within the 1.5x not to exceed NOx + HC mandate of 2.694 g/kW-hr. Following the optimization exercise, further parametric interaction studies were performed to reveal the underlying interactions and phenomena.
Technical Paper

Effects of Piston Crevice Flows and Lubricant Oil Vaporization on Diesel Engine Deposits

2006-04-03
2006-01-1149
The effect of piston ring pack crevice flow and lubricant oil vaporization on heavy-duty diesel engine deposits is investigated numerically using a multidimensional CFD code, KIVA3V, coupled with Chemkin II, and computational grids that resolve part of the crevice region appropriately. Improvements have been made to the code to be able to deal with the complex geometry of the ring pack, and sub-models for the crevice flow dynamics, lubricating oil vaporization and combustion, soot formation and deposition were also added to the code. Eight parametric cases were simulated under reacting conditions using detailed chemical kinetics to determine the effects of variations of lube-oil film thickness, distribution of the oil film thickness, number of injection pulses, and the main injection timing on engine soot deposition. The results show that crevice-borne hydrocarbon species play an important role in deposit formation on crevice surfaces.
Technical Paper

Modeling Combustion and Emissions of HSDI Diesel Engines Using Injectors with Different Included Spray Angles

2006-04-03
2006-01-1150
Combustion in an HSDI diesel engine using different injectors to realize low emissions is modeled using detailed chemical kinetics in this study. Emission characteristics of the engine are investigated using injectors that have different included spray angles, ranging from 50 to 130 degrees. The engine was operated under PCCI conditions featuring early injection times, high EGR levels and high intake temperatures. The Representative Interactive Flamelet (RIF) model was used with the KIVA code for combustion and emission modeling. Modeling results show that spray targeting plays an important role in determining the in-cylinder mixture distributions, which in turn affect the resulting pollutant emissions. High soot emissions are observed for injection conditions that result in locally fuel rich regions due to spray impingement normal to the piston surface.
Technical Paper

Use of a Pressure Reactive Piston to Control Diesel PCCI Operation - A Modeling Study

2006-04-03
2006-01-0921
The heavy-duty diesel engine industry is required to meet stringent emission standards. There is also the demand for more fuel efficient engines by the customer. In a previous study on an engine with variable intake valve closure timing, the authors found that an early single injection and accompanying premixed charge compression ignition (PCCI) combustion provides advantages in emissions and fuel economy; however, unacceptably high peak pressures and rates of pressure-rise impose a severe operating constraint. The use of a Pressure Reactive Piston assembly (PRP) as a means to limit peak pressures is explored in the present work. The concept is applied to a heavy-duty diesel engine and genetic algorithms (GA) are used in conjunction with the multi-dimensional engine simulation code KIVA-3V to provide an optimized set of operating variables.
Technical Paper

Modeling Diesel Engine NOx and Soot Reduction with Optimized Two-Stage Combustion

2006-04-03
2006-01-0027
A multi-dimensional Computational Fluid Dynamics (CFD) code with detailed chemistry, the KIVA-CHEMKIN-GA code, was employed in this study, where Genetic Algorithms (GA) were used to optimize heavy-duty diesel engine operating parameters. A two-stage combustion (TSC) concept was explored to optimize the combustion process at high speed (1737 rev/min) and medium load (57% load). Two combustion modes were combined in this concept. The first stage is ideally Homogeneous Charge Compression Ignition (HCCI) combustion and the second stage is diffusion combustion under high temperature and low oxygen concentration conditions. This can be achieved for example by optimization of two-stage combustion using multiple injection or sprays from two different injectors.
Technical Paper

A Study of the Effects of High EGR, High Equivalence Ratio, and Mixing Time on Emissions Levels in a Heavy-Duty Diesel Engine for PCCI Combustion

2006-04-03
2006-01-0026
Experiments were performed on a single-cylinder heavy-duty Caterpillar SCOTE 3401E engine at high speed (1737 rev/min) and loads up to 60% of full load for fully Premixed Charge Compression Ignition (PCCI) combustion. The engine was equipped with a high pressure (150 MPa) Caterpillar 300B HEUI fuel injection system. The engine was run with EGR levels up to 75% and with equivalence ratios up to 0.95. These experiments resulted in compliance of NOx and PM emissions to 2010 emissions mandates levels up to the tested load. The set of experiments also demonstrated the importance of cylinder charge preparation by way of optimized start-of-combustion timing for sufficient in-cylinder mixing. It was found that increased EGR rates, even with the correspondingly increased equivalence ratios, increase mixing time and substantially decrease PM emissions.
Technical Paper

Optimization of a Large Diesel Engine via Spin Spray Combustion*

2005-04-11
2005-01-0916
A numerical simulation and optimization study was conducted for a medium speed direct injection diesel engine. The engine's operating characteristics were first matched to available experimental data to test the validity of the numerical model. The KIVA-3V ERC CFD code was then modified to allow independent spray events from two rows of nozzle holes. The angular alignment, nozzle hole size, and injection pressure of each set of nozzle holes were optimized using a micro-genetic algorithm. The design fitness criteria were based on a multi-variable merit function with inputs of emissions of soot, NOx, unburned hydrocarbons, and fuel consumption targets. Penalties to the merit function value were used to limit the maximum in-cylinder pressure and the burned gas temperature at exhaust valve opening. The optimization produced a 28.4% decrease in NOx and a 40% decrease in soot from the baseline case, while giving a 3.1% improvement in fuel economy.
Technical Paper

Modeling the Effects of EGR and Injection Pressure on Soot Formation in a High-Speed Direct-Injection (HSDI) Diesel Engine Using a Multi-Step Phenomenological Soot Model

2005-04-11
2005-01-0121
Low-temperature combustion concepts that utilize cooled EGR, early/retarded injection, high swirl ratios, and modest compression ratios have recently received considerable attention. To understand the combustion and, in particular, the soot formation process under these operating conditions, a modeling study was carried out using the KIVA-3V code with an improved phenomenological soot model. This multi-step soot model includes particle inception, surface growth, surface oxidation, and particle coagulation. Additional models include a piston-ring crevice model, the KH/RT spray breakup model, a droplet wall impingement model, a wall heat transfer model, and the RNG k-ε turbulence model. The Shell model was used to simulate the ignition process, and a laminar-and-turbulent characteristic time combustion model was used for the post-ignition combustion process.
Technical Paper

Performance Optimization of Diesel Engines with Variable Intake Valve Timing Via Genetic Algorithms

2005-04-11
2005-01-0374
The strategy of variable Intake Valve Closure (IVC) timing, as a means to improve performance and emission characteristics, has gained much acceptance in gasoline engines; yet, it has not been explored extensively in diesel engines. In this study, genetic algorithms are used in conjunction with the multi-dimensional engine simulation code KIVA-3V to investigate the optimum operating variables for a typical heavy-duty diesel engine working with late IVC. The effects of start-of-injection timing, injection duration and exhaust gas recirculation were investigated along with the intake valve closure timing. The results show that appreciable reductions in NOx+HC (∼82%), soot (∼48%) and BSFC (∼7.4%) are possible through this strategy, as compared to a baseline diesel case of (NOx+HC) = 9.48g/kW-hr, soot = 0.17 g/kW-hr and BSFC = 204 g-f/kW-hr. The additional consideration of double injections helps to reduce the high rates of pressure rise observed in a single injection scheme.
Technical Paper

Application of Micro-Genetic Algorithms for the Optimization of Injection Strategies in a Heavy-Duty Diesel Engine

2005-04-11
2005-01-0219
In this paper, optimized single and double injection schemes were found using multi-dimensional engine simulation software (KIVA-3V) and a micro-genetic algorithm for a heavy duty diesel engine. The engine operating condition considered was at 1737 rev/min and 57 % load. The engine simulation code was validated using an engine equipped with a hydraulic-electronically controlled unit injector (HEUI) system. Five important parameters were used for the optimization - boost pressure, EGR rate, start-of-injection timing, fraction of fuel in the first pulse and dwell angle between first and second pulses. The optimum results for the single injection scheme showed significant improvements for the soot and NOx emissions. The start of injection timing was found to be very early, which suggests HCCI-like combustion. Optimized soot and NOx emissions were reduced to 0.005 g/kW-hr and 1.33 g/kW-hr, respectively, for the single injection scheme.
Technical Paper

Optimization of Injection Rate Shape Using Active Control of Fuel Injection

2004-03-08
2004-01-0530
The effect of injection rate shape on spray evolution and emission characteristics is investigated and a methodology for active control of fuel injection is proposed. Extensive validation of advanced vaporization and primary jet breakup models was performed with experimental data before studying the effects of systematic changes of injection rate shape. Excellent agreement with the experiments was obtained for liquid and vapor penetration lengths, over a broad range of gas densities and temperatures. Also the predicted flame lift-off lengths of reacting diesel fuel sprays were in good agreement with the experiments. After the validation of the models, well-defined rate shapes were used to study the effect of injection rate shape on liquid and vapor penetration, flame lift-off lengths and emission characteristics.
Technical Paper

Reduction of Emissions and Fuel Consumption in a 2-Stroke Direct Injection Engine with Multidimensional Modeling and an Evolutionary Search Technique

2003-03-03
2003-01-0544
An optimization study combining multidimensional CFD modeling and a global, evolutionary search technique known as the Genetic Algorithm has been carried out. The subject of this study was a 2-stroke, spark-ignited, direct-injection, single-cylinder research engine (SCRE). The goal of the study was to optimize the part load operating parameters of the engine in order to achieve the lowest possible emissions, improved fuel economy, and reduced wall heat transfer. Parameters subject to permutation in this study were the start-of-injection (SOI) timing, injection duration, spark timing, fuel injection angle, dwell between injections, and the percentage of fuel mass in the first injection pulse. The study was comprised of three cases. All simulations were for a part load, intermediate-speed condition representing a transition operating regime between stratified charge and homogeneous charge operation.
Technical Paper

Premixed Diesel Combustion Analysis in a Heavy-Duty Diesel Engine

2003-03-03
2003-01-0341
Optimizations were performed on a Heavy-Duty diesel engine equipped with a conventional electronic unit injector in order to minimize fuel consumption, and emissions of NOx and particulate matter. A low speed light load case and a high speed light load case were optimized with these considerations in mind. Exhaustive parametric studies were performed in order to find sets of operating conditions that resulted in low emissions and high fuel economy. It was found for the low speed light load case (Mode 2, 25% load and 821 rev/min) that low emissions operating conditions existed at either very early or very late start-of-injection timings and high EGR (PM = 0.018 g/kW-hr, NOx + HC = 1.493 g/kW-hr with SOI = -21 degrees ATDC, 48% EGR; or 0.085 g/kW-hr PM, 1.02 g/kW-hr NOx with SOI = 4 degrees ATDC, 39% EGR).
Technical Paper

The Effects of Split Injection and Swirl on a HSDI Diesel Engine Equipped with a Common Rail Injection System

2003-03-03
2003-01-0349
To overcome the trade-off between NOx and particulate emissions for future diesel vehicles and engines it is necessary to seek methods to lower pollutant emissions. The desired simultaneous improvement in fuel efficiency for future DI (Direct Injection) diesels is also a difficult challenge due to the combustion modifications that will be required to meet the exhaust emission mandates. This study demonstrates the emission reduction capability of split injections, EGR (Exhaust Gas Recirculation), and other parameters on a High Speed Direct Injection (HSDI) diesel engine equipped with a common rail injection system using an RSM (Response Surface Method) optimization method. The optimizations were conducted at 1757 rev/min, 45% load. Six factors were considered for the optimization, namely the EGR rate, SOI (Start of Injection), intake boost pressure, and injection pressure, the percentage of fuel in the first injection, and the dwell between injections.
Technical Paper

An Experimental Study on Emissions Optimization Using Micro-Genetic Algorithms in a HSDI Diesel Engine

2003-03-03
2003-01-0347
Current automotive diesel engine research is motivated by the need to meet more-and-more strict emission regulations. The major target for future HSDI combustion research and development is to find the most effective ways of reducing the soot particulate and NOx emissions to the levels required by future emission regulations. Recently, a variety of statistical optimization tools have been proposed to optimize engine-operating conditions for emissions reduction. In this study, a micro-genetic algorithm technique, which locates a global optimum via the law of “the survival of the fittest”, was applied to a high-speed, direct-injection, single-cylinder (HSDI) diesel engine. The engine operating condition considered single-injection operation using a common-rail fuel injection system was at 1757 rev/min and 45% load.
Technical Paper

Experimental Investigation of Direct Injection-Gasoline for Premixed Compression Ignited Combustion Phasing Control

2002-03-04
2002-01-0418
A direct injection-gasoline (DI-G) system was applied to a heavy-duty diesel-type engine to study the effects of charge stratification on the performance of premixed compression ignited combustion. The effects of the fuel injection parameters on combustion phasing were of primary interest. The simultaneous effects of the fuel stratification on Unburned Hydrocarbon (UHC), Oxides of Nitrogen (NOx), Carbon Monoxide (CO), and smoke emissions were also measured. Engine tests were conducted with altered injection parameters covering the entire load range of normally aspirated Homogeneous Charge Compression Ignited (HCCI) combustion. Combustion phasing tests were also conducted at several engine speeds to evaluate its effects on a fuel stratification strategy.
X